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THE GENESIS OF DYNAMIC SYSTEMS GOVERNED BY METZLER MATRICES

‘I Kenneth J. Arrow

0. Introduction.

The l iterature on dynamic systems in economics is vast, and an Important part
of that deals with systems of differential or of difference equations where the
Jacobian of the right-hand side is a Metzler matrix, I.e., a matrix whose off-
diagonal elements are non-negative. Such matrices have a wide range of
applicability In dynamic economic models, in Input—output analysis, in stability
analysis of systems of excess demands governing price changes, and in multi-sector

and multi-national Key~-asian income determination models. Oskar Morgenstern early
perceived the importance of such models and encouraged research in then, as seen
in the papers by Y.K. Wong and M.A. Woodbury in Morqenstern (3). For a later
survey, see (2).

The bulk of this work, as indeed the bulk of the work on dynamic systems In
general, concerns what might , in theological terms, be called the eschatoloqy of
the system, the questions of the end or final state of the system. In this paper,
I want to concentrate on the behavior of the system in its initial phases, its

genesis. The problems revolve mainly about the presence of off-diagonal zeroes
in the matrix governing the system and of zeroes in some components of the Initial
conditions and of the forcing terms. If the matrix were strictly positive, for

example, then any initial impulse anywhere inuiediately (or with a lag of one time
period in a difference equation system) produces a positive response everywhere.
But if there are some zeroes In the matrix, then the transmission of the impulses
is delayed. In the case of differential equation systems, the effect appears as
a lower rate of growth of the component; Instead of Increasing linearly, it may
increase quadratically or even with a higher power from Its Initial value of zero.

The discussion of this subject involves what appears to be a new concept , that
of flrst-positlvity. A sequence Is first—positive if the first non-zero element
is positive. Similar definitions can be given for sequences of vectors and matrices.
The methods bring together a rn.miber of elementary concepts from diverse fields,
Including matrix algebra, the theory of relations, and the theory of differential
equations. -

In sectIon 1, the concept of flrst—positlvlty is Introduced, and some

elementary properties develàçsd. In sectIon 2, there is a digression on some

properties of relations which - will be useful In the sequel. Section 3 studie~
flrst.lssnaro and connectivity- propirtift of the sequence formed by the powers of
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a matrix; at this stage, there is no restriction to Metzler matrices. Section 4
discusses a property of matrix exponentials, which are used in expressing the
solution to a system of differential equations. In section 5, we draw the
previous results together in application to the first-posltivity and connectivity
properties of the sequence of powers of a Metzler matrix.

The results to which the earlier sections were leading are contained in
section 6 and section 7. These characterize the geneses of systems of difference
equations and of dIfferential equations, respectively. In the first, the time of
fIrst-posltivity of a specific component is expressed in terms of the connectivity
properties of the matrix, the specification of the positive components of the
starting values, and the flrst-positivlty properties of the forcing function .
In the second, the order of Increase of a specific component is expressed in terms
of the same factors.

1. First—posltivity.
In the following, we use “0” as an abbreviation for “Definition.’ In general,

small letters, such as “x,” stand for sequences (functions on the non-negative
i~te~~rS)Of scalars or vectors; a capital letter, such as “A,” stands for a
sequence of ~~~~ 8s, ~~~~“~~

“ or “A( n)” will be the value of x or A, respectively,
at integer n; “x0” or “Au” will be th~ ~ aia, ;~~“.nce formed by considering only
the component ~ of the vector or the element (a,~

) of the matr{x ~equeirs.
0.1. For a scaler sequence x, define ~x) mm { n J x (n)  ~ ~ }. We refer

tov(x) as the non-zero index of x.
Note that the non-zero index is not necessarily d~’ined, since x might be

Identically zero. This problem of lack of definlUon occurs persistently but can
be dealt with, as will be noted later.

D. 2. x~’ ~ x(v(x)j
This x Is the value of the fIr’~, ~iement in the sequence x whi ch is not zero . The
symb), ‘~~~,

“ Is read, “e ’~ ’~ by definition.”
~ 3. (x is ~~~~~~~~~~~ 

&(x”O).
No lit bc a sequence of vectors. Each of the above definitions Is still

allowed t~ sold, but must be applied to each component. That is, for each
component a of the vector, re Is a scaler sequence. Then v(z~) is defined by 0. 1,
and similarly, (xe) ” by 0. 2. It WIll be useful to Interpret x to be a function
from a finite domain (the domain of its components) to the space of scala,
sequences. L•t F be this domain. Then v(x ) will be interpreted as a function,
the value for a being v(x 0). It must be emphasized, however, that ~(x)  might -not
be d flned for all elements of F, for It can happen that the sequence x

~ 
is

identically zero for some ~ and therefore v( x ) (e) • v(s) Is not defined for
tIsat valus of~~

0. 4. If z Is a sequence oI~ vectors, the functi on v (x) is defined by the

$ 1
— — 

~~~~
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relation, v(x)(a)
D. 5. x”(cs) x

~~
v(x

~)J xe,” ,
so that the function x” has the same domain of definition as v(x).

The analogue of 0.3 for vec.tors Is a vector inequality, I.e., we regard a -

sequence of vectors as first-positive if each component is. However, we have to
account for the possibility that the domain of definition of x might not be the
entire possible domain F. We need a convention for the meaning of an expression
like f(0) >0, or, more generally, for an expression, f(0)>g(0), where one or
both of the functions f and g may be undefined at a particular point 

~
. We shall

regard the inequality as holding if f is undefined at 0and g is defined there or
If both are defined and f(a) Is indeed bigger than g(o), and not otherwise.

Convention 1. If the functions f and g are both defined at o, then the
expression, f(0) > g(~), has Its usual meaning; otherwise, it holds 1-f and only
If f is not defined at ~ and 9 is. 

-

A similar convention will hold for equality.

— Convention 2. If the functions f and g are both define at a , then the
expression, f(ci) g(a), has Its usual meaning; otherwise, it holds If and only
if neither f nor g are defined at a.

If we use the usual symbol,
0.6. doe f (a I f(a) is defined} ,

then Convention 1 says that f(s) > g(a) If a c doe g and a~dom f, while
Convention 2 ImplIes that f(ci) g(u) If ~ ~ doe f, a ~ doe g.

Inequality among functions has the usual meaning that the inequality holds for
all values of the argueent, with, however, the conventions above observed. From
the above remarks, It Is easy to note that,

f~~ g implles dos f Cdom g.
With these conventions , the defi nition of f lrst-p os it iv ity , 0. 3, remains

valid for sequences of vectors . It means that each component is fi rst-p ositive if
not identical ly zero.

The following simple lenmia holds for adding first-positive sequences, whether
of vectors or of scalars .

L e a  1. If x1 Is first-positive for each 1 , then t x~ is fi rst-p ositive ,
and v(E x l ) • eTh v(x 1). I

I I
Proof: Let 

~~
. a~n v(* ), P • ( I~ v(x1) ~ }. If n-< ~, then n <- v (*1)

for all 1, so that x1 (n) a 0 for all 1, by 0.1 , and therefore f x tm (n) • 0.

- 

0fl the otAer Mnd, x1( ) . x 1”~ O for i c P ,by D.Z and thsn D.3, v(z~) >~~for
1~~ P,ifld tJl.y,for,*’(~).0qo,jVp . Hence,Ex1(1~)>O , so that the Leuupe
holds. i

Althou the proof has been stated for scalars , It holds , wi th suitable
Interpretat~ ., for vectors; the operator, “.n,” In the statement of the Lemea
must be take., to hold component-wise.
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Also, it is useful to note how the Conventions are used. The proof as given
seems to require that v(xtm ) is defined for all 1. If, however, It is defined
only for some i, then ~ is taken as the minimum over all I for which it Is 

-

defined. That indeed is the interpretation Implied by Conventions 1 and 2. Then
the argument is valid In every detail; in particular , if v(x~) Is not defined for
some 1-, then certainly, by Convention 1, v(x~) > ~. On the other hand, in just
that case, x1 (n) 0 for al l n, and therefore certainly, x 1(~) 0. In the future,
all proofs will be carried on as though all functions were defined; the correction
for the cases of lack of definition can easily be supplied by the reader.

The same definitions will be needed for sequences of matrices; however, since
a matrix can be thought of as a vector, there is no need for additional definitions.
(Square) matrices can be thought of as functions on a domain of the form, F x F,
there F is finite, and “x” denotes Cartesian product. In this case , if A is a
sequence of matrices, v(A) is a function of two var iables, representing the rows
and the columns.

A useful concept in expressing the solution of systems of difference equations
Is the convolution of two sequences, a term borrowed from probability theory. It
is the same as the expression for the distribution of the sum of two Independent
non-negative random variables.

0. 7. If x and y are two sequences, then the sequence x*y is defined by,
n

(x*y) (n) • z x(j) y(n—j -).
J~Q

First, suppose x and y are scaler sequences. From D.l , ic(S) a o if 5 <

and y(n—j) • 0 if n-J < v(y), or, equivalently, 5 > n-v(y) . Hence,
x(J ) y(n—J ) • 0 unless v(x) 

~ 5 n- v(y).
If n c v(x) + v(y), then v(x) > n — v(y), so that x(j) y(n-J) • 0 for all 5, and
therefore (x*y ) (n) • 0. If n v(x) + v(y), then x(j) y(n-j) 0 except for
S • v(x) • n - v(y), so that (x y) (n) • x[v(x )1 y(’v(y)I xVyV # 0, by 0.2 and
0.1. Hence, for scaler sequences, (x*y ) (n) • 0 for n < v(x) + v(y), ~ 0 for
n • v(x) + v(y), so that, by 0.1, v(x*y) a v(x) + v(y), and , by 0.2, (x*y)”
x ’y’. If It is also assumed that * and y are first-positive , then , by 0.3,

0, y” 0, and therefore (x*y)~’ ~ 0, so that x~y is first-positive.
~~~~~~~~ If x and y are scaler sequences, then v(x*y) v(x)  + v(y), and

(x*y)V ~ y” . If In addition * and y are fi rst-positive , then so is x~y. 4 -

The definition of a convolution can be applied, not only to scalars but also
to vectors and pairs consisting of matrices and vectors, wi th the proper interpre-
tatiun of multiplication in the definition. Let x and y be vector Sequences, each
victor being of the same r~~,.,; of capononts, and let multiplication be interpreted
as the takla ifanlansr prsducs,

z(i) y(,’J) • z c~(J) 
~~~~~~~~~se thet,

——--—-

-w-~~~-~~-~~-
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(x*y) (n) • £ x e(J)  y8(n-j) • E ~ X e(J) y8(n-j ) • Z (x6*y0) (n).j~0 8 Bj O  B
Suppose in addition that x and y are first-positive. Then, for each 8, *8 and
are first-positive , and therefore x 6 y0 Is first-positive , by Leimna 2, and x’y Is
first-positive by Lenm~a 1. From Lemas 1 and 2,

v (x*y) mm v (x8*y8 ) • mm [v(x) (B) + v(y) (B)] . (2)
B B

We wil l  apply this result to multiplication of a matrix sequence A by a
sequence of conformi rig column vectors, x, where both A and x are first- pos i U ye.
Equation (2) can be applied, with each row of A, In turn, replacing x, and x
replacing y. The sequence A*x Is a sequence of column vectors.

Lema 3. Let A be a first-positive sequence of matrices , and x a first-
positive sequence of column vectors conforming with A. Then v(A*X) (a) * mm
(v(A)(a,8) + v(y) (B)) and A*x is first-positive. B

2. Relations, their Powers, and Chains.
A relation is simply a set of ordered pairs. In the main application in this

paper, the relation, C(A), is defined by the condition that a C(A) 8 Is and only if

~ 0, for a gIven matrix A; thus, C(A) is the set of all ordered pairs for
which this condition holds. Typically, then, a relation, R, is some subset of
F * F. In this section, however, the relation R Is arbitrary.

A ~articularl~~interest1ng relation is the identity relation, E.
0.8. (a- Eø ) •(a •B)
Following Quine (4), p. 213, the relative product of two relations, R & S,

is defined by,
D.9. (a PIS 8)•(for some y , a R y a n d y S B ) .

Like any other form of multiplication, tPe relative product can be used to define
the powers of -a relation inductively.

0.10. R0~~E,R I
~~.R ~ I. R.

This definition can be given a usefu l alternative form by Introducing the
concept of an 1-chain.

0.11. (a is an 1-chain of length n from a to e ) • (a is a function defined
on the integers 0,...,n, a(0) • a, o(n) • 8, and a(1-1) N a(1) for I •
In short, an N— chain is an ordered sequence of n+l elements, such that the relation
I holds between every successive pair.

It is intuitively obvious and can easily be proved by induction that the
relation ~ holds if and only if there is an 1-chain of length n connecting the two
el nts.

Limes 4, a R’~ B if and only If there - exists an R-chain of length n from a to
B. .

.FOr a given a and B, there may be 1-chains of different lengths from one to
the other (of course, it Is also possible that there are no 1-chains of any length —

frop~~to B) .~~~ Y

I , 

-
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0. 12. (a is a shortest N-chain from a to 8) 4 (for some n and all m n ,
o is an R-chain of length n from a to B and there is no N-chain of length m frM
oto 8). 

.

Shortest chains have a property which will be useful later.
Lema 5. A shortest N-chain is a one-one function.
Proof: We seek to prove that If a is a shortest R-chaln from a to B and If
* 0(12), then 1 1 ~~ 

Let I • mm Cm 1, 
~2~’ 

h = max (i i, 12) - I.
Clearly, h ~ 0 by definition; we seek to prove that h • 0, or, equivalently, that
h CO. To this end, we construct an R-chaln of length n-h from a to B, where a 4 .
is an N—chain of length n; since a is a shortest R—chain , it follows by definition
that n-h ~ n, or h ~ 0. By assumption,

(3) 1 ;:-
Define a function, a’ on the integers 0,...,n-h, as follows:

a’(i) • a(I), 0 ~ i < i , (4a )
• a(i+h), I I ~ n-h. (4b)

If! • 0, then from (4b) and (3), a’ (O) • a(h) • a(0). I f ! >  0, then a ’(O) * a(0)
from (4a ), so that a’(O) a(O) in either case. Also , from (4b), o’(n-h) a (n).
Since a is an R-chain of length n from a to B, o(O) a and a(n) = 

~; hence, we
have shosm that a’(0) • a and o’(n-h) • B.

To show that a’ -Is an R-chain of length n-h from a to B, it remains, by D.1l ,
to show that a’(I—l) N a’(i), 1 ~ I ~ n—h. If I < !~ 

this follows iuanediately from
(4a). If I > I, then 1— 1 ~ 1; by (4b), a’ (i—l) • a(i+h—l), a’(i) * a(i+h), and, - 

-

since a is an N—chain , a (i+h—l) R a(i+h), and therefore a ’(i-l) R o’( i ) .
Finally, let I a I; then I > 0. In this case, a’(i—l) • a(i-1), while

a’(l) • a(i+h) a a(1 + h) • aC-f) a a(1), by (4a), (4b), and (3). Since a is an
N—chain, a(1-l) N a(i); hence, a’(i-l) R a’(i). Therefore all the conditions of
0.11 are satisfIed for a’, so there is an R-chaIn of length n-h from ato B, and
therefore h ~ 0, verifying the bosnia.

To any fixed a, there is associated the set {a oR 8} ; we introduce the
notation N B to stand for this set. More generally, If there Is a set of va lues of
B, say S, then I S, Will stand for the union of the sets RB, for 8 £ S.

0.13. RS~~ (ai J for sosni 5 , a R 8 a n d 8~~ S).
It is easy to see that , - .

R(SvT)- (N S) v (N - T), (5) - - -

where A.4 Is the union of the sets A and 8.
More generally, if S~ Is an Index set of sets, with I varying over a set 1,
N Us •UR S1 , (6)I I

where ~~S1 is the union of the sets S1.
3. ‘~~: .i ]~~ ~~~~~~~~ index for the Sequence of Powirs of a - -

- 

- 

-

The foltowi~g çgçmectIv~t~ r,la~1o!l can be associated in a natural way with

_ _ _ _ _ _ _ _ _ _ _ _  
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any given matrix A.
0.14. (~ C(A) a 

) • (A08 ~ 0).
The connectivity relation for a power of A will al so be of interest.

The sequence of powers of a matrix , A”, n ~ 0, where A0 
~ I, is a particular

sequence, and a nonzero index function can be associated -wi th that sequence. As a
matter of notation, we must distinguish between a particular element of the
sequence and the name of the sequence. For this purpose, we borrow the functional
abstractor notation from mathematical logic (see, e.g. (4), p. 226). In general,
for any function which takes on the value f(x) at the point x, we will mean by

~ 
f(x) the name of the function which takes on these values. In this paper, we

will apply the notation only to sequences, where the variable Is n.
0.15. A,, f(n) Is the function which takes on the value f(n) when the
argument takes on the value n.
Thus, A~ An is the sequence of powers of A. Associated with thIs sequence is

a nonzero Index function, v ( A~ A”), defined over ordered pairs. By 0.1, 0.4, and
0.14;

v(A,, An) (~, a) a min ( n J~ C(A”)a }. - (7)
Note that,

C(A°) a c(I) • E, 
- 

(8)
so that a C(A°)a holds if and only if ~ • a; therefore,

v(An A
n)(.,B) a 0 If and only if ~ 8. (9)

In view of (7), v (x~ A”) Is defined for a particular pair 
(
~,a) If and only If

ciC(A~)B 
for some n. In set-theoretic language, define the relation , K’ (A) , by

I - - D.16. K’ (A) • 1..) C(A”),
naO

where U is the union of the relations C(A”); remember that a relatio,- is a
n—O

particular kihd of set. Then,
K” (A) • do., V(A~ A”) don (A~ A”)’ . (10)
We will explore that effects on the nonzero index and related concepts for a

sequence of powers of a matrix of altering the matrix by adding a constant to the
diogonal elements. As a prel iminary, it Is noted that the binomial theorem is
valid for pairs of,,matrices which commute with each other.

(A + 8)” . £ (~) A r .~~
r if A Ba gA .

r.0 -

Let 8 be a scalar multiple of the identity matrix , B • SI for some scalar s. Then
sI commutes with exery matrix A. Note that (51)n r  ~ 5n-r 1n-r ~ 5n-r 

~
(A + 51)n • ~ 

(fl) 5n—r Ar (11)

0.17. (A B mod I) ~ ( A la  si for some scalar s)
Note that the relation is sy etric. Suppose it holds for two matrices, A and B.
From (ll), a - 

-

($*) • ~ (n) •
n.r (AT’) for some scaler s. (12)r

I , 
—

7 —



Clearly, if (B”~8 p1 0, then It must be that (A ’) 8 p1 0 for some r n. In
particular, let n a v ( A ~ B”)(~,ø). Then It follows that,

v(A,~ A”)(~,~) ~ v(A ~ B”)(a,~).
But since the relation, A B mod I , is syninetric, this must hold with A and B.
interchanged; also , it holds for any and a.

v(A~ An) a v (A~ B”).
If two functions are equal, they have the same domain of definition , by Convention
2; hence, from (10), K”(A) = Ky (B). Further, if we set n a v(A~ A”)(a ,B) =

v(x,, B~)(0,a), then, by (7), (8r) = 0 for r c n; fron~ (12), (B”)3 (A”)8By D.5,
(A,, A”)’ = (A ~ B”)’ .
Theorem 1. If A = B mod I, then (a) v(A~ A”) ~(x ,, Bn);
(b) (A ~ Afl)v • (A n B”)’~ ; and (c) K’ (A) * K’ (8).
The relation C(A) measured what might be termed the direct connectivity of the -

matrix. Two elements may be indirectly connected through a chain of direct
connections. In view of Lema 4, it is natural to define the connectivity index
of a matrix (a function, not a number) as smal lest power of C(A) which holds
between two elements.

0.18. 6(A)(o,8) mm ( nj a[C(A)J ~ 8 }
Note that, since (C(A)]° • E, 6(A)(~,B) s o if and only If a • 3.

Also, if A 8 p
I 0 and a p1 a, then uiC(A)113 while not a C(A) 08, so that 6(A) (a ,8)

a 
~• From 0.18, the domain of definition of the connectivity Index is precisely

the set of ordered pairs for which the relation EC(A)J “ holds for some n. Define,
0.19. KS (A) • U [C(A) ] “.

naO
Then,

K6 (A) • don 6 (A). (13)
It Is convenient to Introduce the notation,

- z(A) (a.a , n) Is the set of C(A)-chains of length n from a to ~. (14)
Thin, from 

-~~~~

a[C(A) J”~ If and only if z(A) (a, ~, n) Is non—en~ty. (15)
We Investigate the effect on the connectivity Index of a change In the

diagonal elements of the matrix. (Although for our later purposes , only a constant
change Is relevant, the results hold for any change in the diagonal elements.) - -

Suppose therefore A - B is a diagonal matrix; note again that this relation is
symmetric. Let a- be a C(A)-chain of length 6 (A)(a,~). By D.18, It is a shortest
C(A)-chain from a t~ ~, and therefore a is a one-one function by Leouna 5. In
particular, aC t—i ) pl a(I), 1 ~ I ~ d(A)(~,a). Since A-B is diagonal,

Aa(i.l),~(l) a 8a-~~_~~, a(1)~ 
- (16)

Since q Is a C(A—chain, o( 1— l) C(A) o(i)  for all 1 , or, by 0.14, A
a-( _ 1) o ( I )  p1 0,

all I. By (16), Ba(f_1),,,(i) p1 0 for all I, so that a Is a C(8)-chain. In the

— — ~~~~~

I - - 
- 

~~~~~~~~~~~ r~~~~ ~~~~~~ 
_ _ _ _ _



notation (14),
E(A) (a , 3, 6(A) (a ,8) )C t(B) (~ , 3, 6 (A) (a,6) ).

If 6(A) is Indeed defined at (a ,B) ,  then the left-hand set is non-empty and there-
fore so is the right-hand set. By D. 18 and (15),

6(B) (a,3) ~ 6(A) (a ,8). -

This statement also holds if 6(A) is undefined at (i,8) by Convendons 1 and 2. By
the symetry, the inequality holds with A and B Interchanged , so that ~(A) = 6 (B).
Since the two functions are equal , they have the same domain 0f definition . From

(13), then, we have
t Theorem 2. If A - B is a diagonal matrix, then 6(A) • 6(8) and K

6 (A) K6 (B).

4. Matrix Exponentlals
As is well known, solutions to systems of linear differential equations wi th

constant coefficients can be expressed simply in terms of the exponential of the

matrix of coefficients.
D.20. eA 

~ Z A”/n!
The infinite seriP 0converges absolutely for all A , so that eA is defined and the

series can be rearranged at will. If we add the scalar multiple of the identity

matrix to A, the value of the exponential can be expressed with the aid of (11).
eA+5I = E (A+sI)”/nl = £ (1/ni) £ (nt/ u i!) S1 A~

n—0 n=0 i+j n
• I I • 4 • 4

( • £ z (s ’ / i t ) ( A 4 Ij i )  z( E s’/it) ( £ A~/Ji)
I fla0 j+jan ia0 jaO

Lemma 6. If A B mod I, then e8 
= p eA for some positive scalar p.

Corollary l. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Corollary 2. If = B mod I, then C(eA ) C(eB).

- - 5. First- Positivlty and Connectivity of Non-negative and Metzler Matri ces.
First, make the obvious observation that If A ~ 0, then cs C(A) 3 if and only if

A08 ‘ 0. Recall ,
(A~

’1)08 
a z~(A”)a-,. ~y 8

If A ~ 0, then An 
~ 0 for all n. Hence, the right-hand side Is a sum of non-

negative terms and is positive if and only if at least one is positive. Therefore,

a if and only if, for some 6,(A”)03 A08 0, or, equivalently, if and

only if, for some y, aC(A”)~ and yC(A)~ . In the notation of 0.9,
C(A”’~ ) a C(A”) J C(A). - ( I i )

~~~~~~
LaPuna 7. If A ~ 0, C(A”) • (C(A)J ~
Proof: For n a 0, we know that C(A°) E • [C(A) i°. Suppose the Lenuiia is

true for n. Then, from (‘17),
- C(A” ) • [C(A)J ” (C(A) a (C(A)j ” ‘

by 0.10.
F~~~ (7) and the definItion of 6(A), 0.18, Lemma 7 Immediately I~~11es that

_ _ _ _ _ _ _  
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v(A~ A”) • 6(A) when A ~ 0; the two functions have the same domain of definition ,
so that K” (A) a K6 (A) by (10) and (13).

Since A” ~ 0, It follows Immediately from D.5 that (A ,~ A”)” ~ 0; but by D.4,
it must be that (A ~ A”)” (o,8) p1 0 for all (a,8) in the domain of definition , so
that (A A”)” > 0, that is, the matrix sequence , A A”, Is first—positive.

Finally, from the definition of an exponential , D.20, e ~ 0 when A ~ 0.
Since the definining series is a sum of non-negative terms,

(cA)03 > 0 if and only if (An)8 > 0 for some
so that,

C(eA ) U C(A ”) K” (A),
n~0by D.16.

Lenuna 8. If A ~ 0, then A~ A” is first-positive , ~(x~ A”) = 6(A), eA ~ 0, and
K” (A) = 1(6 (A) a C(e’~).
The main mathematical result of the paper is that this Lemma holds not merely

for non-negative but for all Metzler matrices. We recall the definition .
D.2l. A is Metzler If A 8 ~ 0 for ~ p1

A simple and useful relation between Metzler and non-negative matrices Is the
following:

A is Metzler if and only if there exists B ~ 0 such that A B mod I. (18)
Theorem 3. If A Is Metzler, then A A” Is first-positive, v (A  A”) 6(A),
1
~~~~ d K” (A) a K6 (A) = C(e’~).

Proof: Choose B as in (18). Then, from Theorem 1, Lemma 8, and Theorem 2,
v(A ,, A”)” v(A,, B”)”a 6(B) = 6(A).

From Theorem 1 and Lemma 8,
(A,, An)v (x,, B”)’ > 0.

From Lemma 8, eB ~ 0, and therefore from Corollary 1 , e
A 
~ 0. Finally, from

Corollary 2, Lenuna 8, and Theorem 1, C(eA ) = C(e8) = K” (B) a K” (A), while from
Lemma 8 and Theorem 2, K~ (B) a 1(~ (B) • K’ (A). -

The importance of this theorem is that the qualitative behavior of the powers
and the exponential of a Metzler matrix can be inferred solely from Its connectivity
propertIes. These depend only on the location of the off-diagonal zeroes and are
independent both of the diagonal elements and of the magnitudes of the non-zero
off—diagonal elements. Thus, If we raise a Metzler matrix to successively higher
powers we know that In each place i~ the matrix , the first non-zero element (if
any) will be positive and the power for which the non-zero entry occurs Is equal to
the length of the shortest chain from the row element to the column element through
non—zero entries.

A side consequence of the analysis is a pair of what are apparently new
necessary and sufficient conditions for a matrix to have the Netzier property.

Theorem 4. Each of the following condi tions is necessary and sufficient that
A be a Netzler matrix: (a) An A

1t is fi rst-positive; (b) •At 
~ 0 for all t > 0.



Proof: (a) Necessity has already been shown In Theorem 3. Suppose, then, that
the sequence A,1 A” is first-positive. The pairs (a,3) can be classified according
as v(A A”) (a,8) is 0, 1, or greater than 1. In the first case, as remarked in
(9), ~ a a. In the second, we must have (A ) p1 0, by definition , and therefore
A08 > 0, since A fl A

n Is first-positIve. In the third case, (A1)3 
a 0 by

definition of the non-zero index. Hence, if a-p 1 a, A 8 ~ 0, so that A is a
Metzler matrix.

(b) If A is Metzler and t > 0, a scalar, then At is also Metzler, and eAt ~ a
by Theorem 3. Conversely, suppose that eAt ~ 0 for all t > 0. Note that eAt =

when ~ = 0, that,
d(~~

t) 
A eAt,

so that, -

• - : d~eAt1 a A,

and that, by definition,
d~eAt )1 a urn (eAt - I)

~ t-’ O
From the hypothesis and (18), eAt - I is Metzler for t > 0, and therefore
(e~t - fl/t is a Netzler matrix for t > 0. Hence, A is a l imit of Metzler matrices;
since the set of Metzler matrices is clearly closed , from the definition, A must be
a Metzler matrix.
6. Genesis of a System of Difference Equations with Metzler Matrix as Jacobian

We consider the system of difference equations,
x(n+l ) a Ax(n) + b(n), (19)

where we assume that A is a Metzler matrix, b a first-positive sequence, and
x(0) ~ 0. To express the solution compactly , define a vector sequence, c, by,

c(n) a x(0) for n a 0,
a b(n-1) for n 0. (20)

Then (‘19) can be written ,
x(n+l) a Ax(n) + c(n+1), -

x(0) c(0).
By Induction, it is easy to verify that,

x(n) a 2 A1 c(n-J),
jaQ

or, ii’ the notation introduced In D .7 ,
x a (A~ A”)~c. (21)

Since b is first-positive, it is easy to see from (20) that c is first—positive (If
x~ (0) >0, then c~ (0) > 0, so that C

8 is certainly first—positive; if x0 (0) • 0,
then the first non-zero element In the sequence c6~is the first non-zero element
of b8 with non-zero index Increased by 1, and must be positive since b is first-
positive.) If A is Mstzler, A1t *~ is fIrst -positIve by Th orem 3. Nence, by

_ _  _ _ _ _  
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Lemma 3, x is first-positive , and ,
- mm I v(A,, A”)(a,~) + v(c)(8)J . (22)

Define, for any vector x,
0.22. P(x) ~ {a x0 ‘ 0 ).

In (22), for each ~, either ~eP[x(0)j or 8 t P[x(0)j . The minimum can be taken
separately over the two sub-sets and then the minimum of the two taken. Note that
if $~ P(x(0)], then, from ( 20), v(c)(3) = 0, whIle if B ,~ P[x(0)j, then v(c) (~

) =

v(b)(3) + 1. Further, from Theorem 3, v(A~ A”)(a,~) 6(A)(a,8). Substitution
Into (22) yields,

Theorem 5. If A is a Metzler matrix, b a first-positive sequence of vectors,
x(n+l ) a Ax(n) + b(n), and x(0) ‘~ 0, then x is a first-positive sequence, and

v(X)(a)

• mm C mm 6(A)(a ,8), 1+ mm (6(A)(o ,B) + v(b)(~)J)B cP [x(0) ] 8 £P Ex(0) ]
Note that Theorem 5 Implies that each component Is positive before It can

become negative. Further, a given component can be positive in two different ways.
One Is ultimately due to a positive Initial component 0 which is linked to the
given component a directly or Indirectly. The other is through the emergence of
a positive element In one component of the forcing term b(n), which is then linked
to the given component, a. The shortest of all these routes determines the length
of time before the positive effect appears.
7. Genesis of a System of Differential Equations with Metz’1er Matr ix as Jacobian

As a preliminary , we note, in the notation introduced i~ D.13 and 0.22,
Lemma 9. I fA ~ O and x ~~0, then P(Ax ) a C(A) P(x ) .
Proof: ( A )  a ~ A 8 x3 . Since all terms are non-negative by assumption ,

(Ax )0 ‘ 0 if and only if, for some a, A 8 0 and x8 0; but this holds If and
only if, for some a, zC(A)~ and ~

Now consider the system of differential equations,
x a A  + b (t), (23)

where A is a Netz’1er matrix, b(t) ~ 0 for all t, and x(0) ~ 0. This clearly has
the solution, -

x (t) • e~ x (0) + r~ ~~~~~ b(u) du,0

• y(t) + z(t), (24)
where,

y (t) • •
At x(0) , 

- 

(25)
t

z(t) a / A(t~i) b(u) dii. (26)
0

$, ~~~~~~~~ 4~ •
At 

~ 0 for ill t > 0. so that, from (25), y(t) ~ 0 for all
t ~ 0. AiSO, 1A~t.v) ~ 0 for t ii; since b(u) ~ 0 for all ii, by assumption ,

,
A(ssu) b(u)~~~~~o o ~~~~~u~~~~~t (27) 
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and therefore z ( t)  ~ 0 from (26). CombinIng these statements we see tha t,
x (t) ~ 0, and P (x(t)) 

a P(y(t))v P(z(t)J , all t’- O. (28)
From Leiluna 9, P[y(t)J a cceAt P(x(0)3, all t> 0.

From Theorem 3, C(eAt) K 6(At) for t > 0; but since obviously C(At) = C(A)
for any matrix A and any scalar t p1 0, it follows from the definition of K
0.19, that K 6(At) a 1(6 (A) for all t> 0.

P(y(t)] a 1(6 (A) P[x(0)J for t > 0. (29)
In particular, P[y(t)J is independent of t for t > 0. Hence, as far as the effects
of initial conditions go, any component that is going to be positive eventually

f is positive immediately. However, as will be seen below, the delay effects of
the connectivIty of the matrix affect the solution but In a different way.

- 
- If, for sane component ~~~~~~~ b(u) ) a 0 for all u, 0 ~ u -c t , then

obviously, from (26), (z(t))0 0. On the other hand, if b is assumed continuous,
then if -

(e~ t hJ) b(u))0 > 0 for some u, 0 ~ u - c t ,
It is positive in some interval and hence from (27) and (26), (z(t)) > 0. In
symbols,

— P[z(t)J a U pieA(t u) b(u)J = < U C(eA(t_ IJ)) P(b(u)]
- 0~ u < t  ~~ u - c t

• 1(6 (A) P(b(u)]
0~ u<t

K~ (A) U P (b(u ) J ,  for t’O. (30)
0~ u c t

The steps are the same as those leading to (29), together with a final step which

uses (6).
The result can be made still more transparent with the aid of a nonzero index

for functions of a continuous variable.

D.23. c(b) (a) lnf Ct I t ~ 0, b8 (t) p1 0}.

If ii c~(b) (a), then b8 Cu) 0, and therefore a j P[b(u)J. Therefore, if

t ~ ~(b)(e), a j P(b(u)j for all u, 0 ~ u t, and therefore,

If t ~ C (b)(a), a i U P(b(u)J.
0~~ u < t

Suppose now t > ç (b)(a). Then, by D.23, there exists u,

~(b) (a) ~ u c t, ~ cP(b(u)j,
and therefore,

8 t U P(b(u) l .
0~ u-- c t

Hence,
• U P(b(u) 1 if and only If

8 c 0~u ( t  .

0 ~ C(b)(1) c t. (31)

For fixed b, ~(b) is a function over a finite set. For any function, 1,

suns the set (xl f(x) • y}; for any set S In the range of 1, f ’1(S) means

‘
I 

-
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the set Cx ~f(x) ~ 5). In this notation,
O ~ c(b)(8) -c t if and only if Bc(C (b)J~ (cO,t)),

where cO,t) Is the interval closed on the left and open on the right.
0 Then,

< 
I.) P b (u) — [c(b)J~ (<0, t)).

Oa u - c t
In combination with (30), (29), and (28), we can state,

• .Theorein 6.* Suppose A Is a Metzler matrix , b continuous and non-negative,
= Ax(t) + b(t) for all t ~ 0, and x (O) ~ 0. Then, x( t )  ~ 0, all t ~ 0, and,
PIx(t) 1 • ~ ~ (A) [Pfx ( 0) ~ (c(b)] 

‘1 (-cO ,t) )j for t > 0.
Notice again that the signs of all the components are completely determined

by the sign patterns of the matrix of the initial conditions, A and of the forcing
function b. At any time t, we find all components which are either positive at
time 0 or have been nonzero at some time point before t; then take all components
linked to them directly or indirectly by chains of nonzero entries In the matrix
A. This set is precisely the set of positive components at time.

This theorem actually relates to more than thegenesis of the dynamic system.
The next result will study behavior at the starting-point, specifically, the
qualitatIve behavior of the successive time derivatives of the different components
of x(t) at the point t • 0.

First, the non-negativity of a function and the flrst-positivity of the
sequence of Its derivatives are related.

Lemma 10. An Infinitely differentiable vector function f is non-negative for
t ~ 0 if and only If , for each t ~ 0, the sequence A~ f~”~(t) is first-positive.Proof: Suppose f(t) ~ 0, all t ~ 0, but for some to ~ 0, the sequence

— 

- A~ f~”~(t0) Is not first-positive. Them there exist B and n so that,

f(r) Ct0) • 0 for r -c n, f~1) (t0) -c 0. But if n • 0, then f3 Ct0) c 0,
contrary to hypothesis; if n > 0, then f 8 (t) -c 0 in some right-hand neighborhood
of to, again contrary to hypothesis.

Conversely, suppose A11 f~~ (t) is first—positive for all t. Then In
- 

- - particular, it is impossible that f3 (t) -c 0 for any t and a, for then f(o)(t) -c 0,
in which case the sequence A

1t 
f(n)(t) would not be first-positive.

I 
- - Differentiate the system of differential equations (23) n times, and then

— 

s e t t • 0 .
z(~

11)(o) a Ax(”~(0) + b(n)(0). (32)
By Lemma 10, the sequence A~ b~’~(O) is first—positive; the matrix A Is Metzler
by assumption; and x~

0
~(0) • x(O) ~ 0, by assumption. Hence, (32) constItutes a

sys tem of diffe rence equations whi ch satisfies all the hypotheses of Theorem 5.

~~~~~~~ 
(hider the hypotheses of Theorem 6, the sequence A~x~”~(O) Is

first positive, -and
• The conclusion that x (tJ ‘~ 0 already appeared in (1), Theorem , p. 14.

_ _ _ _ _ _ _ _  
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v(A11 x~’~ (O)

• mm C mm 6 (A)(a,~), 1 + sin 61(A)(a,a) + v(A b (n)(O)Ua P(x(O)J a ~ P[x(O) J
Thus, a positive Initial component causes every component Indirectly

connected to it to become positive ~n the right-hand neighborhood of the origin ,
but the order of growth (linear, quadratic, or whatever) depends on the length
of the connecting chain through the matrix. Similarly , a forcing term will cause
an order of growth in a component of xwhlch Is greater by 1 than the sum of the• order of growth of the forcing term at zero and the length of the shortest chain
to the x-component. These remarks are only valId for the first effect on the
given component.

To Illustrate, for an ic-component which is initially zero, the growth Is
linear if either there is a chain of length 1 to a positive x-ccmponent or the
forcing term for the given component is positive . The growth Is quadratic if
neither of these conditions hold and if one of the following three conditions is
valid: ( 1) there is a chain of length 2 to a positive init ia l  component; (2)
there Is a chain of l ength I to a component whose forcing term is increasing
linearly from zero; (3) the forcing term for the given component is increasing
q-~adratically. 

-
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“This paper studies the behavior in the neighborhood of sthe starting point of dynamic
systems (solutions of difference or differential equations) whose Jacobians are Metzler
matrices . (A )4etzler matrix Is one whose off—diagonal elements are non—negative.)
A new concept , that of first— posit ivity of a sequence , is introduced ; a sequence is
fi rst—positive if its first non—zero element is positive. First—poaitivity holds
for a sequence of matrices or vectors if it holds for each component. It is shown
that the sequence of powers of a Metzler matrix is first—positive ; also, for each
position in the matrix (defined by row and column), the number of steps to the first
non—zero entry in the sequence is equal to the minimum length of a chain .from the
row to the column through non—zero entries in the Metzler matrix . From this, it is
poanible to express (a) th . time of first—positivity of a specific component of the
solution to a system of difference equations and (b) the order of increase of a
specific component of th. •olution to a system of differential equat ions in terms of
the connectivity prop erties of the governing matrix , the specification of the positive
components of the starting value s, and the fir et—positivity properties of the forcing
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